
LECTURE 36 THE DEFINITE INTEGRAL

In previous sections, we learned about using a �nite amount of rectangles to approximate the area under
the graph of a function. At the end of section 5.2, we took this �nite number of rectangles to in�nity, while
shrinking the size of the subintervals. The goal is to obtain the most accurate approximations. With the
limiting process, we are now in position to de�ne the area under the graph of a function.

From Finite to Infinite

Let's recall what the �nite sum looks like. Consider a function f (x) on the interval [a, b]. We consider n
subintervals on [a, b], and suppose we use the right endpoint rule. Each subinterval has length ∆x = b−a

n .
Our partition then is

P = {a, a + ∆x, a + 2∆x, . . . , a + (n− 1) ∆x, a + n∆x}
where we note the last term

a + n∆x = a + n
b− a

n
= a + b− a = b.

Using the right endpoints, we simply ignore x = a. Thus, the sum of all these rectangles is

Area (n) = ∆xf (a + ∆x) + ∆xf (a + 2∆x) + · · ·+ ∆xf ((n− 1) ∆x) + ∆xf (a + n∆x)

= ∆x (f (a + ∆x) + f (a + 2∆x) + · · ·+ f ((n− 1) ∆x) + f (a + n∆x))

= ∆x

n∑
k=1

f (a + k∆x)

If we know f (x) and the interval [a, b] explicitly, then we know the expression for Area (n). The next step
is to take n→∞, or equivalently shrink the size of the subintervals.

General Partitions and The Limit of a Riemann Sum

Here, most usually, we are doing equal-width subintervals. However, one can do a more general partition
using subintervals of various sizes, as long as the sum of the lengths add up to b − a. This means, each
subinterval does not necessarily have to have the same length, and we label them

∆xk = xk − xk−1, k = 1, 2, . . . , n,

that is, the kth rectangle has width ∆xk. Therefore, the partition is also generalized (total number of points
didn't change, n + 1 points),

P = {x0, x1, x2, . . . , xn}
or in other words, the interval [a, b] now can be written as a union of

[x0, x1] , [x1, x2] , . . . , [xn−1, xn] .

Here, choosing the left or right endpoint is up to you. But we are also allowed to choose any point in the
interior of each subinterval, such as the midpoint. We call this arbitrary choice of evaluation point ck, in the
kth interval. Once an evaluation point ck is chosen, the area of the rectangle then is f (ck) ∆xk. We simply
add from k = 1 up to k = n, i.e. the Riemann sum

Area (n) =

n∑
k=1

f (ck) ∆xk.

Since the subintervals may be of di�erent lengths, the way to interpret n → ∞ then is to consider the
maximal length of the subintervals, written as ‖P‖. If ‖P‖ → 0, that is, the maximal subinterval length
goes to 0, then all the smaller ones go to zero as well.

De�nition. If

lim
‖P‖→0

n∑
k=1

f (ck) ∆xk = J

exists, then we de�ne

J =

∫ b

a

f (x) dx.

Note that this de�nition is regardless of the choice of partition, whether equal-width or not, and hence
regardless of what rule you use (that decides the location of ck). This notation reads �the integral from a to
b of f of x dee x/with respect to x.
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The parallel here is between the symbol
∑

and
∫
(which both relate to the word sum).

If the subintervals are of equal width, then the general form above reduces to∫ b

a

f (x) dx = lim
n→∞

b− a

n

n∑
k=1

f

(
a + k

b− a

n

)
.

One last thing to note is the di�erential dx in association with the independent variable x. The value
of the de�nite integral depends on the function form and the interval, but not on the variable we use to
represent the independent variable. In other words,∫ b

a

f (t) dt =

∫ b

a

f (u) du =

∫ b

a

f (x) dx

which all are the same number, if there is one. This variable of integration is called a dummy variable

(t, u, x in the above three cases).

Theorem. If a function is continuous on [a, b], or it has at most �nitely many jump discontinuities there,

then the de�nite integral
∫ b

a
f (x) dx exists and f is said to be integrable over [a, b].

Properties of Definite integrals

(1) ∫ b

a

f (x) dx = −
∫ a

b

f (x) dx.

(2) ∫ a

a

f (x) dx = 0.

(3) The de�nite integral is linear.
(4) ∫ b

a

f (x) dx =

∫ c

a

f (x) dx +

∫ b

c

f (x) dx

(5) Max-min inequality: if f achieves a max and a min on [a, b], then

(min f) (b− a) ≤
∫ b

a

f (x) dx ≤ (max f) (b− a) .

Note that with the current form, this inequality doesn't make too much intuitive sense. However,
since [a, b] is not a trivial interval (such that a = b), we know b − a > 0. Therefore, we are allowed
to divide b− a from both sides without a�ecting the two inequalities,

min f ≤ 1

b− a

∫ b

a

f (x) dx ≤ max f.

Does the middle part look familiar? Yes, that is the average value of the function f (x) on [a, b].
Certainly, it should be sandwiched between the extrema.

(6) Domination: if f (x) ≥ g (x) on [a, b], then∫ b

a

f (x) dx ≥
∫ b

a

g (x) dx.

A special case is that if f (x) ≥ 0, then∫ b

a

f (x) dx ≥ 0,

that is, non-negative functions have non-negative area under it over [a, b].


